
BlueRock AWS
CloudFormation Deployment

The following is a guide that shows how to create and deploy a BlueRock Node
using a CloudFormation template in AWS.

Above is the architecture created by the CloudFormation Template. It contains the
following components:

• The BlueRock Node Instance. This instance and its workloads are protected by
BlueRock, it contains the following:

◦ BlueRock Rule Processing Engine: This container manages the node's policy
and collects information about the node for rule enforcement. BlueRock
policies can be configured for application and container runtime as well as
process and file level controls.

◦ Trex: Trex is an internal tool that turns simple json policy files into signed
BlueRock consumable policy files. After writing a new policy file it needs to
be processed by Trex before being uploaded to the policy bucket

◦ OTel Collector: BlueRock manages its logs using Open Telemetry Receivers,
Processors and Collectors. An intermediate collector has been placed as a

Introduction

Architecture Diagram

Documentation https://docs.bluerock.io/~gitbook/pdf?page=bfWGrJWDwYNebJiE...

2 of 8 7/22/25, 4:01 AM

container on this instance to allow for ease of access in the log
management for this marketplace listing. All BlueRock Logs are sent through
this intermediary collector on their way to Cloudwatch.

• Additional AWS services: This template utilizes additional Amazon services for
configuration and event monitoring

◦ Amazon S3: This service is used to store signed policies in a BlueRock
Policy S3 Bucket

◦ Amazon CloudWatch: BlueRock sends events to a CloudWatch Log Group
via the OTel Collector

The following NodeInstanceTypes are supported with BlueRock. Larger instance
sizes should also be compatible, but the below list has been validated:

t3.2xlarge
t3.xlarge
t3.large
t3.medium
t3.micro
t3.nano
t3.small
m5.2xlarge
m5.xlarge
m5.large
r5.2xlarge
r5.xlarge
r5.large
r5n.2xlarge
r5n.xlarge
r5n.large
i4i.2xlarge
i4i.xlarge
i4i.large
d3.2xlarge
d3.xlarge

Installation

Prerequisites

Documentation https://docs.bluerock.io/~gitbook/pdf?page=bfWGrJWDwYNebJiE...

3 of 8 7/22/25, 4:01 AM

The BlueRock Installation requires customers obtain the following artifacts:

• BlueRock CloudFormation Template

• BlueRock Node AMI: Shared through AWS accounts

To use this Cloud Formation template, ensure that the calling entity has the
permissions necessary to call for CAPABILITY_NAMED_IAM capabilities. Additionally,
ensure that an AWS managed ssh key is present in the region. As a parameter of
the template, a key managed by the EC2 service is needed for developers to
access the nodes. Developers should have access to the name of their key and
the private and public key files.

Through the AWS Web Console

1. Navigate to the CloudFormation Service Page

2. Select Create stack → With new resources (standard)

3. Select Choose an existing template

a. Specify template source by selecting the Upload a template file

4. Upload the BlueRock CloudFormation Template

5. Select Next

6. Fill in all template parameters (see Parameter table below)

7. Select Next

8. Under Capabilities Acknowledge the creation of IAM Roles / Policies (see
Policy Table Below)

9. Select Next

10. Confirm Stack creation and Submit

Through the AWS CLI

Make sure the CLI is installed and has privileges to specify
CAPABILITY_NAMED_IAM

Using CloudFormation

Documentation https://docs.bluerock.io/~gitbook/pdf?page=bfWGrJWDwYNebJiE...

4 of 8 7/22/25, 4:01 AM

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Call create-stack specifying the parameter file, template file and capabilities

Example Parameters File

CloudFormation Template Parameters

aws cloudformation create-stack --stack-name <string-name> --template-
body file://<template-file-location> --capabilities
CAPABILITY_NAMED_IAM --parameters file://<json-param-file-location>

[
 {
 "ParameterKey": "AllowIp",
 "ParameterValue": "<your_ip_address>/32"
 },
 {
 "ParameterKey": "ConfigBucket",
 "ParameterValue": "my-s3-bucket"
 },
 {
 "ParameterKey": "NodeInstanceType",
 "ParameterValue": "t3.xlarge"
 },
 {
 "ParameterKey": "NodeAmi",
 "ParameterValue": "ami-xxxxx"
 },
 {
 "ParameterKey": "Prefix",
 "ParameterValue": "unplugged-single-1"
 },
 {
 "ParameterKey": "SampleHostName",
 "ParameterValue": "bru-host"
 },
 {
 "ParameterKey": "SshKeyName",
 "ParameterValue": "my-ssh-key"
 },
 {
 "ParameterKey": "TrexVersion",
 "ParameterValue": "trex-25.28_bru-release-beta"
 },
]

Documentation https://docs.bluerock.io/~gitbook/pdf?page=bfWGrJWDwYNebJiE...

5 of 8 7/22/25, 4:01 AM

This stack takes about 5 minutes to build.

SSH into BlueRock Instance

Once the stack has completed, select it (CloudFormation → <Stack-Name>) and
view the Resources tab. Here you can search for the NodeInstance instance.
Connect to NodeInstance via an SSH command using the key specified in
SshKeyName .

SSH Command

Check Services

Parameter Name Description

AllowIp
Developer’s IP address to whitelist in the
BlueRock Instance for SSH access

ConfigBucket
Name of S3 bucket generated to hold
BlueRock policy files (must be globally
unique)

NodeInstanceType Size of BlueRock node to be created.

NodeAmi Image AMI ID for BlueRock EC2 Instance

Prefix
Unique Identifier appended to AWS
resource names

SampleHostName
Unique Identifier for BlueRock UC Container
name

SshKeyName
Name of AWS managed SSH key, used for
authorizing access to the BlueRock Instance

TrexVersion
Version name of trex package tied to
release

ssh -i <priv-key> ec2-user@<instance-pub-ip>

Installation Validation Checks

Documentation https://docs.bluerock.io/~gitbook/pdf?page=bfWGrJWDwYNebJiE...

6 of 8 7/22/25, 4:01 AM

The BlueRock Services are initialized through the uc-docker.service service.
Ensure that the service and the Rule Engine container are running and enabled.
Additionally, use the provided script to view the logs exported by the Rule Engine.

Finally, ensure the OTEL collector service is running and enabled.

To enable the enforcement of policies, BlueRock Instances need a reachable policy
file in place. In this architecture, we will load the policy file into the CF generated S3
bucket.

First we will create the signed policy file on the BlueRock Instance.

Once connected, navigate to ~/policy where a sample policy (bru_policy.json)
with all protection mechanisms set to observe mode is present. Once the policy is
modified we need to sign it using Trex.

$sudo systemctl status uc-docker.service
$ docker ps
CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS NAMES
5b5e00d1881f ultracontrol:latest
"/opt/bluerock/sbin/…" 7 hours ago Up 7 hours uc
e0186c875227 public.ecr.aws/aws-observability/aws-otel-
collector:latest "/awscollector --con…" 7 hours ago Up 7 hours
otel-collector

$/opt/bluerock/bin/uc-docker.sh logs

$docker logs otel-collector

$ python3 /opt/bluerock/trex/trex.py <policy-file>
$ tar xvf buv_policy.tar

Policy Configuration

Documentation https://docs.bluerock.io/~gitbook/pdf?page=bfWGrJWDwYNebJiE...

7 of 8 7/22/25, 4:01 AM

Ensure that the bru-venv is activated when using any python commands

This will generate a tar file containing the new policy, the policy’s signature and a
sha256 sum of the policy. All three of these files need to be uploaded to the
BlueRock Policy Bucket.

The Services Instance also generates a new public key on creation, this key is
specified in the trex.toml file located in the policy directory. This public key
also must be uploaded to the BlueRock Policy Bucket.

These policy files take ~10 mins to propagate to each node.

Refer to the Configuring BlueRock Security Policies section for instructions on
editing and tuning policies.

Any time the policy file is updated the tar needs to be re-created and pushed to the
policy bucket.

$ source /home/ec2-user/build/bru-venv/bin/activate

Pushed Item Description

policy.json
Json version of buv_policy.yaml, this
includes additional configs supplied by Trex

policy.json.sig
signature file for policy.json, needed for
verifying authenticity of policy file

policy.json.sha256
sha256 sum of policy.json, needed for
verifying integrity of policy file

aws s3 sync . s3://<bluerock-cfg-s3-bucket-name> --exclude "*" --
include "policy.json*"
aws s3 cp ./bluerock_pub_key.pem s3://<bluerock-cfg-s3-bucket-name>

Documentation https://docs.bluerock.io/~gitbook/pdf?page=bfWGrJWDwYNebJiE...

8 of 8 7/22/25, 4:01 AM

https://app.gitbook.com/s/CNnVnPvaRpvlLmPT6IAN/configuring-bluerock-security-policies
https://app.gitbook.com/s/CNnVnPvaRpvlLmPT6IAN/configuring-bluerock-security-policies

